Interpretable credit risk modelling with
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About me

e Co-founder/CEO at Inspiration-Q
e PhD in quantum physics

e Associate professor at IE University
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Credit risk modeling
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Solution: Machine Learning

Machine Learning Process
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A new problem arises: lack of interpretability
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What makes a good interpretable model?

1. As concise as possible
2. Formulated in terms of basic logic rules (and, or, ...)

3. Formulated in terms of linear operations
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Basic interpretable model: logistic regression

Example

feature_name

intercept

age

Number Of Time 30-59 Days Past Due Not Worse
Monthly Income

Number Of Times 90 Days Late

Number Real Estate Loans Or Lines

Number Of Time 60-89 Days Past Due Not Worse
Number Of Dependents
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beta

-2.806086
-0.379303

1.736287

-0.721586

1.484934
0.090145

-3.055844

0.120262

exp(beta)

0.060441
0.684338
5.676227
0.485981
4414676
1.094333
0.047083
1.127793

Ln =Py + X+ B X, +..+ B X,
Odds ratio P: probability of default

Xk: Feature k

Problem: linearity limits accuracy
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Feature selection, a key difficult problem

Use less features if possible to improve

conciseness and performance Combinatorial

explosion

Choose a basket of 20 features out of 100 to create
a logistic regression with the best performance?

535,983,370,403,809,682,970 combinations
to explore

Exponential combinatorial problem intractable
with conventional solvers.

number of combinations

problem size
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Another interpretable model: decision tree

Monthly
Income?
<2000 € >2000 €
Account
balance?
< 3k > 3k

Default

Repaid

Default

Repaid
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Tree depth ~ Conciseness

Key advantage: a decision tree implicitly
introduces non-linearity!
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Building improved interpretable models

1. Add new candidate non-linear interpretable features using short decision trees

2.  Apply feature selection on the expanded dataset to choose the best basket.

Example

Feature Bi ePi
Intercept -1.7 0.2
Number Of Open Credit Lines And Loans 0.025 1.025
Age > 54 and Debt Ratio > 0.563 0.46 1.59
Age < 54 and Times 60-89 Days Past = 0 -1.19 0.30
Age > 54 and Times 60-89 Days Past = 0 -1.43 0.24
Age < 54 and Times 90 Days Late = 0 -1.56 0.21
Age > 54 and Times 90 Days Late =0 -1.93 0.15
Times 30-59 Days Past = 1 -0.46 0.63
Times 60-89 Days Past = 0 and Times 30-59 Days Past > 0 0.71 20
Times 60-89 Days Past = 0 and Revolving Utilization > 0.698 0.42 1.52
Times 90 Days Late = 0 and Times 60—-89 Days Past = 0 -0.59 0.56
Times 90 Days Late = 0 and Times 30-59 Days Past > 0 0.71 2.0
Times 90 Days Late > 1 0.67 2.0
Times 90 Days Late = 0 and Revolving Utilization > 0.548 0.54 1.71
Times 90 Days Late = 0 and Number Real Estate Loans Or Lines > 4 |1.1 3.0
Revolving Utilization > 1.004 0.63 1.9
Revolving Utilization < 0.314 -0.60 0.55
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Quantum-inspired algorithms for feature selection

Loan Default augmented with 100 trees
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We need powerful feature selection
algorithms for the previous idea to
work well. Quantum-inspired
algorithms significantly outperform
conventional methods.

Same performance using
100 less features!!
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Conclusions: 3 key ideas

New type of interpretable model to close the gap in
performance with black-box models

Powerful feature selection techniques are key for the previous
idea to work.

Quantume-inspired feature selection offers a unique approach to
build interpretable models with state-of-the-art performance.
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Thanks for your attention
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