Interpretable credit risk modelling with quantum-inspired algorithms

Samuel Fernández Lorenzo

DIGITAL REPORTING IN EUROPE 3–5 JUNE 2025, FRANKFURT Hosted by the European Central Bank

About me

- PhD in quantum physics
- Associate professor at IE University

Credit risk modeling

Solution: Machine Learning

Machine Learning Process

A new problem arises: lack of interpretability

What makes a good interpretable model?

- 1. As **concise** as possible
- 2. Formulated in terms of basic logic rules (and, or, ...)
- 3. Formulated in terms of linear operations

Basic interpretable model: logistic regression

Example

	beta	exp(beta)
feature_name		
intercept	-2.806086	0.060441
age	-0.379303	0.684338
Number Of Time 30-59 Days Past Due Not Worse	1.736287	5.676227
Monthly Income	-0.721586	0.485981
Number Of Times 90 Days Late	1.484934	4.414676
Number Real Estate Loans Or Lines	0.090145	1.094333
Number Of Time 60-89 Days Past Due Not Worse	-3.055844	0.047083
Number Of Dependents	0.120262	1.127793

 $Ln\left(\frac{P}{1-P}\right) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k$

Odds ratio

P: probability of default Xk: Feature k

Problem: linearity limits accuracy

Feature selection, a key difficult problem

Use less features if possible to improve conciseness and performance

Choose a basket of **20** features **out of 100** to create a logistic regression with the **best performance**?

535,983,370,403,809,682,970 combinations to explore

Exponential combinatorial problem intractable with conventional solvers.

Combinatorial explosion

problem size

Another interpretable model: decision tree

Tree depth ~ Conciseness

Key advantage: a **decision tree implicitly** introduces non-linearity!

Building improved interpretable models

- 1. Add new candidate **non-linear interpretable** features using **short decision trees**
- 2. Apply **feature selection** on the **expanded dataset** to choose the best basket.

Feature	β_i	e^{β_i}
Intercept	-1.7	0.2
Number Of Open Credit Lines And Loans	0.025	1.025
Age > 54 and Debt Ratio > 0.563	0.46	1.59
Age \leq 54 and Times 60–89 Days Past \equiv 0	-1.19	0.30
Age > 54 and Times 60–89 Days Past $\equiv 0$	-1.43	0.24
Age \leq 54 and Times 90 Days Late $\equiv 0$	-1.56	0.21
Age > 54 and Times 90 Days Late $\equiv 0$	-1.93	0.15
Times 30–59 Days Past $\equiv 1$	-0.46	0.63
Times 60–89 Days Past $\equiv 0$ and Times 30–59 Days Past > 0	0.71	2.0
Times 60–89 Days Past $\equiv 0$ and Revolving Utilization > 0.698	0.42	1.52
Times 90 Days Late $\equiv 0$ and Times 60–89 Days Past $\equiv 0$	-0.59	0.56
Times 90 Days Late $\equiv 0$ and Times 30–59 Days Past > 0	0.71	2.0
Times 90 Days Late > 1	0.67	2.0
Times 90 Days Late $\equiv 0$ and Revolving Utilization > 0.548	0.54	1.71
Times 90 Days Late $\equiv 0$ and Number Real Estate Loans Or Lines > 4	1.1	3.0
Revolving Utilization > 1.004	0.63	1.9
Revolving Utilization ≤ 0.314	-0.60	0.55

Example

ġţ;

Quantum-inspired algorithms for feature selection

We need powerful **feature selection algorithms** for the previous idea to work well. **Quantum-inspired algorithms** significantly **outperform** conventional methods.

Same performance using 100 less features!!

Conclusions: 3 key ideas

New type of interpretable model to close the gap in performance with black-box models

Powerful **feature selection** techniques are key for the previous idea to work.

Quantum-inspired feature selection offers a unique approach to build interpretable models with state-of-the-art performance.

Books

TODO LO QUE PUEDO IMAGINAR El algoritmo del entendimiento

Samuel Fernández Lorenzo

Thanks for your attention

DIGITAL REPORTING IN EUROPE 3-5 JUNE 2025, FRANKFURT Hosted by the European Central Bank

